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A method for automatic numerical generation of a general curvilinear coordinate 
system with coordinate lines coincident with all boundaries of a general multi-connected 
region containing any number of arbitrarily shaped bodies is presented. No restrictions 
are placed on the shape of the boundaries, which may even be time-dependent, and the 
method is not restricted to two dimensions. With this procedure the numerical solution 
of a partial differential system may be done on a fixed rectangular field with a square mesh 
with no interpolation required regardless of the shape of the physical boundaries, re- 
gardless of the spacing of the curvilinear coordinate lines in the physical field, and 
regardless of the movement of the coordinate system. Numerical solutions for the 
lifting and nonlifting potential flow about Joukowski and Barman-Trefftz airfoils 
using this coordinate system generation show excellent comparison with the analytytic 
solutions. The application to fields with multiple bodies is iksrrated by a polentiai 
flow solution for multiple airfoils. 

1. INTRODUCTION 

There arises in all fields concerned with the numerical solution of partial d 
tial equations the need for accurate numerical representation of boun 
conditions. Such representation is best accomplished when the boundary is 
that it is coincident with some coordinate line, for then the boundary 
to pass through the points of a finite difference grid constructed on the coo 
lines. Finite difference expressions at, and adjacent to, the boundary may 
applied using only grid points on the intersections of coordinate lines without the 

need for any interpolation between points of the grid. 
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The avoiding of interpolation is particularly important for boundaries with 
strong curvature or slope discontinuities, both of which are common in physical 
applications. Likewise, interpolation between grid points not coincident with the 
boundaries is particularly inaccurate with differential systems that produce large 
gradients in the vicinity of the boundaries, and the character of the solution may be 
significantly altered in such cases. In many differential systems the boundary 
conditions are the dominant influence on the character of the solution, and the use 
of grid points not coincident with the boundaries thus places the most inaccurate 
difference representation in precisely the region of greatest sensitivity. The genera- 
tion of a curvilinear coordinate system with coordinate lines coincident with all 
boundaries (herein called a “natural coordinate system” for purposes of identifica- 
tion) is thus an essential part of a numerical solution. 

A general method of generating natural coordinate systems is to let the natural 
coordinates be solutions of an elliptic partial differential system in the physical 
plane, with Dirichlet boundary conditions on all boundaries. The procedure is not 
restricted to two dimensions, allows the coordinate tangential to the boundary to 
be distributed quite easily as desired along the boundary, and is applicable to all 
multiconnected regions (and thus to the flow about any number of arbitrarily 
shaped bodies). The coordinate system so generated is not necessarily orthogonal, 
but orthogonality is not required, and its lack only requires that the partial differen- 
tial system to be solved on the coordinate system when generated must be trans- 
formed directly through implicit partial differentiation rather than by use of the 
scale factors and differential operators developed for orthogonal curvilinear 
systems. An orthogonal system cannot be achieved with arbitrary spacing of the 
natural coordinate lines around the boundary, and the capability for such arbitrary 
spacing is of more importance than orthogonality. 

This idea has been applied previously to two-dimensional regions interior to a 
closed boundary (simply connected regions) by Winslow [I], Bar-field [2], Chu [3], 
Amsden and Hirt 141, and Godunov and Prokopov [5]. Winslow [l] and Chu [3] 
take the natural coordinates to be solutions of Laplace’s equation in the physical 
plane which, as is shown in the next section, makes the physical Cartesian 
coordinates solutions of a quasi-linear elliptic system in the transformed plane. 
Barfield [2] and Amsden and Hirt [4] reverse the procedure, taking the physical 
coordinates to be solutions in the transformed plane of a linear elliptic system which 
consists of Laplace’s equation modified by a multiplicative constant on one term. 
This makes the natural coordinates solutions of a quasi-linear elliptic system in the 
physical plane. (Barfield also considers a hyperbolic system, but such a system 
cannot be used to treat closed boundaries, since only elliptic systems allow specifica- 
tion of boundary conditions on the entirety of closed boundaries.) 

Amsden and Hirt [4] construct the coordinate generation method by iterative 
weighted averaging of the values of the physical coordinates at fixed points in the 
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transformed plane in terms of values at neighboring points. ~ltb~~g~ not stated as 
such, this procedure is precisely equivalent to solving Laplace’s equation, or a 
rnod~~~atio~ thereof of the form noted above in arfield [2], for the 
coordinates in the transformed plane by Gauss-Seidel iteration” (Amsden 
also allow the boundary to move at each iteration, but this is simply equi 
a~~roa~~i~~ the solution of the boundary-value problem t rough a SucGession of 
boundary-value problems converging to the problem of interest.) In the approach 
of Godunov and Prokopov [S] the elliptic system is quasi-linear in both the physical 
and transformed plane. (These authors apply a second tra~sform~t~o~ to that used 
by Chu [3], the transformation functions of this latter ~a~sformat~o~ being chosen 
a priori to control the coordinate spacing. Though not stated as such, the overah 
transformation may be shown to be generated by taking the transformed 
coordinates to be solutions in the physical plane of Laplace’s equation modified by 
the addition of a multiple of the square of the Jacobian, the multiplicative factors 
being a priori chosen functions of the physical coordinates.) 

In the present research this technique of generating the natural coordinates as 
solutions of an elliptic differential system in the physical lane has been extended 
to muhiconnected regions with any number of arbitrarily shaped 

resent eEort is confined to two dimensions in the interest of co 
ut all techniques are immediately extendable to three dimen 

cedure is explained, illustrated, and confirmed by a~~l~~at~o~ to the 
tential flow about several bodies in the f~~~~~i~g sections. 

11. BASIC TRANSFORMATION ETHOD 

A, ~~th~~atical Construction 

Let it be desired to transform the two-dimensional, doubly connected region, 
bounded by two closed contours of arbitrary shape into a re~ta~~~ar region, 
as shown in Fig. 1. The general transformation from the physical plane (x, Y) to 
the transformed plane (5, 9) is given by E = &c, JI)> 7 = n(x, u). Similarly, the 
inverse transformation is given by x = ~(6, T), y = JI(<, 7). derivatives are 
transformed as follows: 

where J is the Jacobian of the transformation, J = x,~, - xv ys . 
Since the basic idea of the transformation is to generate tra~sfo~atio~ f~~~t~~ 
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PHYSICAL PLANE 

TRANSFORMED PLANE 

FIG. 1. Field transformation-single body. 

such that all boundaries are coincident with coordinate lines, the natural 
coordinates ([, 7) are taken as solutions of some suitable elliptic boundary value 
problem with one of these coordinates constant on the boundaries. Using Laplace’s 
equation as the generating elliptic system, we have 

(24 
(2b) 

with Dirichlet boundary conditions, q = constant = Q on C, ,q = constant = Q 
on C, ; [(x, Y) a multiple valued solution with a branch of .$(x, Y) specified (but not 
constant) on C, and C, . The curve C, on the physical plane transforms to the upper 
boundary, C,‘, of the transformed plane. Similarly, C, transforms to C,‘, etc. The 
right and left boundaries of the rectangular transformed plane, C,’ and C,‘, are 
coincident in the physical plane, The curve which transforms to these boundaries 
connects C, and C, and determines a branch cut for the multiple valued function 
&c, Y). Thus the functions and all derivatives are continuous across this cut. 

Now since we wish to do all numerical computation in the rectangular trans- 
formed plane, it is necessary to interchange the dependent and independent 
variables in (2). Thus 

-gg - q3xeT7 + ?/x,, = 0 Pa) 
@-Y,, - 2PYes + YYm = 0 (3b) 
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where 

a = xv2 + y*2 (34 

P=%xn+Y,Y, (3d) 

y = xe2 + Yt2 (3e) 

with the transformed boundary conditions, x =fi(<, 713 on (c;‘, y = g,@, Q) on 
Cl’, x = m, 372) on G’, Y = g2(f, ~3 on G’. 

This system is a quasi-linear elliptic system with Dirichlet boundary con 
for the physical coordinates in the transformed plane. The differential equations 
of the system (3) are considerably more complicated than those of Eq. (2). 
ever, the boundary conditions of Eq. (3) are specified on straight boundarie 
the computation field is rectangular. We have thus exchanged a problem havmg 
simple equations but complex boundary conditions for a problem having complex 
equations and simple boundary conditions. This statement also holds for aill 
partial differential equations solved on the natural coordinates. 

The natural coordinate system so generated has a constant q-line coi~~~de~~ 
with each boundary in the physical plane. The <-‘-lines may be spaced in any manner 
desired around the boundaries by specification of the 4 boundary conditions, or 
equivalently by specification of (x, y) at the equi-spaced &points on the qr and Q 
lines of the transformed plane. Control of the spacing of the y-lines may be exer- 
cised by varying the elliptic system of which < and q are solutions. For example, the 
use of the system (2) with equi-spaced points on circular boundaries will produce 
an expanding cylindrical coordinate system, while the addition of l/q to the right 
side of (2b) will produce the common system of cylindrical coordinates. 

As noted above, orthogonality is not required of a coordinate system for sol&’ 
of a system of partial differential equations. Indeed, normal derivatives on 
boundaries may be easily represented in a non-orthogonal system as follows: Let 
y = g(x), (y - g(x) = f(x, y) = 0) be the equation of some boundary in ~art~s~~~ 
coordinates. Then 

= J( 1 + (g’)2)1/2 Lfdg’Y, + 4 - f,(dYc f xc)1 

where g’ = dyldx. All derivatives in the last expression can be 6~~ulated along 
coordinate lines in the natural coordinate system. Thus it is not necessary to 
require orthogonality at the body surface in order to get an accurate representatio 
of the normal derivative. 



FIG. 2. Coordinate system-Joukowski airfoil. 

FIG. 3. Coordinate system-Karman-Trefftz airfoil. 
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FIG. 4. Coordinate system-flapped Marman-Trefftz airfoil. 

FIG. 5. Coordinate system-rock. 
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Once the (I, 7) system is obtained by solving Eq. (3) we may then solve any set 
of partial differential equations on this natural coordinate system by solving the 
transformed equations on the rectangular transformed field. Thus regardless of 
the shape of the body and regardless of the spacing of the natural coordinates, all 
numerical computations, both to generate the coordinate system and to sub- 
sequently solve the partial differential system of interest, are done on a rectangular 
grid with a square mesh, i.e., in the transformed plane. Finally, it is shown in the 
Appendix that physical integral conservation relations need not be lost in the 
transformed plane. 

B. Numerical Solution of the Transformation Equations 

The set (3) has been successfully solved for a number of bodies-Joukowski and 
Karman-Trefftz airfoils and an arbitrarily shaped rock-(Figs. 2-5) using 
accelerated Gauss-Seidel iteration. The plots given are of l = constant lines and 
77 = consta n t I’ mes in the physical plane. An analytical solution of Eq. (3) can be 
obtained for circular boundaries with equispaced points and was used as a test case 
for the computer routine. 

C. Application to Potential Flow 

In order to verify the usefulness of the natural coordinate systems described 
above, the Laplace equation for the stream function for lifting and non-lifting 
potential flow was solved numerically using the curvilinear coordinate system. 
When transformed this equation becomes 

“*CE - vvP* -I- y*wl = 0 (5) 

where 01, p, and y are given by (3c, d, e), and the transformed boundary conditions 
are 

#(E, 77) = 0 on 7j = rll (i.e., on C,) 

$46 71) = UdG 712) cos 0 - Umx(& Q) sin 0 on 17 = qz (i.e., on C,> 

where 19 is the angle of attack. The uniqueness is implied by insisting that the 
solution be periodic in -co < 5 < co, ql < 7 < Q . 01, p, and y are calculated 
during the generating of the natural coordinate system. Equation (5) was approxi- 
mated using second-order, central differences for all derivatives, and the resulting 
difference equation was solved by accelerated Gauss-Seidel iteration on the 
rectangular transformed field. 

Plots of the stream function contours for the airfoils and the rock are given in 
Figs. 6-10. The comparison with the analytic solution6 for the Joukowski and 



FIG. 6. Nonlifting potential flow-Joukowski airfoil. 

FIG. 7. Lifting potential flow-Joukowski airfoil. 
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FIG. 8. Lifting potential flow-Karman-Trefftz airfoil. 

Karman-Trefftz airfoils is excellent. In particular, it should be noted that the points 
of intersection of the zero streamline with the airfoils agree with the analytic 
solutions. These points were not controlled in any manner by the coordinate 
system (Figs. 2-4) or by any other means, but were entirely free to be determined 
by the numerical solution. (The solid lines represent the analytic solution in 
Figs. 6-9, and the squares the numerical solution. The plots are unretouched 
contour plots produced on a Gould Electrostatic Plotter. Only a portion of the 
computational field used is shown in these figures.) The excellent correspondence 
between the numerical and analytic results on these figures reflects the fact that the 
rms error between the numerical and analytic solutions was only 0.001 % of the 
maximum value of the stream function on the field. It is clear from these results 
that the use of body-fitted curvilinear system can lead to highly accurate numerical 
solutions. 



3. 9. Lifting potential flow-flapped Rarnan-Trefftz airfoil. 

FIG. 10. Nonlifting potential Aow-rock, 
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III. EXTENSIONS 

A. Regions With Multiple Bodies 

The same procedure for natural coordinate generation may be extended to 
regions that are more than doubly connected, i.e., have more than two closed 
boundaries or, equivalently, more than one body or hole within a single outer 
boundary. The transformation to the rectangular field is illustrated in Fig. 11. 

PHYSICAL PLANE 

TRANSFORMED PLANE 

-ry\\u\\\Lu- 

% 

“; 

FIG. 11. Field transformation-multiple bodies. 

We require that the v-coordinate be equal to the same constant on all the interior 
boundaries, i.e., on all “bodies” in the field. Let all the bodies be connected by 
arbitrary cuts and, similarly, one body be connected to the outer boundary by an 
arbitrary cut. Since the q-coordinate is equal to the same constant on all the bodies, 
it is, of course, equal to that constant on the cuts between the bodies also. By 
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contrast, the &coordinate is taken constant on the cut between the bodies and the 
outer boundary. Since the locations of these cuts are not specified, the speci 
of 7 or [ as constant on a cut does not overspecify the elliptic problem. 

Note that all bodies except one are split into two segments. Each cut a 
twice on the transformed field boundary, of course, the two segments corresp 
to the two “sides” of the cut in the physical plane and thus being re-entrant bound- 
aries with the functions and all derivatives continuous thereon. We thus have 
(x, JJ) specified on the portions of the upper boundary of the transformed field that 
correspond to the bodies, and also on the entire lower oundary, corresponding to 
the outer boundary in the physical field. The remaining portions of the ~~~~~ 
boundary and the entire side boundaries are re-entrant boundaries, and thus 
neither require nor allow specification of (x, y) thereon. 

Again an elliptic Dirichlet problem is solved to generate the natural coordinates 
(f, r>, as in the previously-considered case with only a single body. Ah computation, 
both to generate the coordinates and subsequently to solve the partial d 
system of interest, are again done on the rectangular field with square mesh in the 
transformed plane. Figures 12 and 13 show the coordinate system and hfting 

FIG. 12. Coordinate system-multiple airfoils. 
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FIG. 13. Lifting potential flow-multiple airfoils. 

potential flow for multiple airfoils. Note that there are no discontinuities in the 
streamlines across the cut between the bodies. 

B. Time-Dependent Coordinate Systems 

Now suppose the coordinate system changes with time, i.e., the grid points move 
in the physical plane. Ordinarily such movement of the physical grid points would 
require interpolation among the grid points to produce values of the dependent 
variables at the new locations of the grid points. With the present method of 
coordinate system generation, however, it is possible to perform all computation 
on the fixed rectangular grid in the transformed plane without any interpolation no 
matter how the grid points move in the physical plane as time progresses. This 
occurs as follows: 

Recall that the natural coordinate system is generated as the solution of some 
elliptic system with the values of the transformed coordinates (e, 7) specified on the 
boundaries in the physical plane, one of these coordinates being specified to be 
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constant on the boundaries and the other being d~str~bu%ed as desired along the 
boundaries in order, perhaps, to concentrate grid points in certain regions. The 
transformed coordinates define a rectangular plane, the extent of which is deter- 
mined by the range of the values of 6 and 9. Now if the same boundary values of 4 
and 71 are redistributed in the physical plane, perhaps because the boundaries In 
the physical plane have actually moved or maybe just to change the concentration 
of grid points around the boundaries, and a suitable elliptic system is solved for 
the transformed coordinates with these new boundary conditions, new transforma- 
tion functions can be produced with still the same range of values in 5 and 7 
(provided the elliptic system used exhibits a maximum principle) and hence to the 
same rectangular field in the transformed plane. The grid points in the ~e$ta~~~~~r 
transformed plane thus remain stationary, and the effect of the movement of the 
coordinate system in the physical plane is then just to change the vahues of the 
physical coordmates (x, v> at the fixed grid points in the rectangular transformed 
plane. 

Thus, although the position of a grid point changes on the physical pIane, its 
position in the transformed plane is fixed. Also, with the time derivafive transW 
formed to the transformed pIane as shown below: 

all derivatives are expressed in the transformed plane, so that the interpolation that 
would be necessary to supply values at grid points in the physical plane that have 
moved is not required in the transformed plane. (Note that in the transformed 
expression for the time derivative, all derivatives are taken at the fixed grid points 
in the transformed plane. The movement of the grid in the physical plane is 
reflected only through the rates of change of x an y at the fixed grid points in the 
transformed plane.) 

It is thus possible to cause the natural coordinate system to change in time 
however desired and still have all computation done on a fixed rectangular grid 
with square mesh without the need of any interpolation. This allows the naturak 
coordinate system in the physical plane to deform with a deforming body, blast 
front? shock, free surface, or any other boundary, keeping a coordinate line al-ways 
coincident with the boundary at all times. It also allows the concentration of mesh 
points to be changed as desired with time. 

Mathematically what has transpired is that the original problem, consisting say 
of N partial diEerentia1 equations of any type with appropriate, possibly steady, 

boundary conditions specified on moving general boundaries, has been transformed 
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to a system of N + 2 partial differential equations (the two elliptic equations for 
the natural coordinates having been added) with boundary conditions that are now 
time-dependent but specified on steady rectangular boundaries. The physical 
coordinate system has thus been, in effect, eliminated from the problem, at the 
expense of adding two elliptic equations to the original system. 

Moving boundaries have been treated in simply-connected regions in the work of 
Amsden and Hirt [4] and Godunov and Prokopov [5]. 

C. Control of Spacing of Coordinate Lines 

As noted above, the spacing of the coordinate lines emanating from a boundary 
is easily controlled at the boundary, since values of this coordinate are specified as 
desired on the boundary. Control of the spacing of coordinate lines in the field, 
however, must be accomplished by altering the elliptic system that is solved to 
generate the coordinates. Only elliptic systems that exhibit a maximum principle 
are acceptable, however, since the entire bounded physical region, R, must map 
onto the rectangular region, R’, in the transformed plane. A maximum principle 
guarantees that the maximum values of the curvilinear coordinates occur on the 
boundary of the physical region, R, so that the mapping is as required. This aspect 
of the method of natural coordinate generation is one which will have to be studied 
in some detail before optimum methods of coordinate line spacing control evolve. 
However, one method of control is as follows: 

One other elliptic equation for which the maximum principle does hold is the 
equation 

where P is a continuously differentiable positive function of x and y and f0 is a 
constant between the maximum and minimum boundary values off. A natural 
coordinate system may be generated by solving the two boundary value problems 
consisting of the equations 

with the boundary conditions given above. The functions P and Q are continuously 
differentiable positive functions on R and its boundary and the constants e, and Q 
are the minimum boundary values of {(x, y) and &x, y), respectively. The effect of 
replacing Laplace’s equation by these elliptic equations is the following. 

Let .& and Q be the harmonic functions with the same boundary values. Since 
Vz< > 0 and V2q > 0, the solutions t and 7 of the boundary value problems are 
subharmonic on R. A basic property of subharmonic functions gives the in- 
equalities .$ ,( & and 17 < vn throughout the region R. Thus replacing V2[ = 0 by 



BODY-FITTED COORDINATE SYSTEM 315 

vzt = et - 53 causes the interior of the 5 = constant ~~~rd~nate lines in the 
physical plane to move in the clockwise direction. This has the effect of decreasin 
the positive angle from the contour C, to the coordinate line. Replacing V%J = 
by PQ = Q(q - 71.J causes the y = constant coordinate lines to move closer to t 
contour C, , hence, resulting in a more expanding system. 

Instead of the equations above, it might be more desirable in certain problems to 
use either Vzt = P(s - .$,) or V%,I = Q(v - ~3 in place of Laplace’s ~q~~~i~~, 
where t, and qI are the maximum boundary values of [ and 7. These eq~a~~~~s 
would produce the opposite effect on the natural coordinate system. 

In regard to fluid mechanics computations, the intriging possibility exists of 
taking P and Q to be dependent on the vorticity magnitude, or other gradients, 
and thus causing the coordinate lines to co rate automatically in ~~g~~~s of 
high gradients in the flow field, allowing the co stem to be t~rne-de~e~~d~~~ 
as discussed in the preceding section. This a way of ~a~d~~g shocks 
automatically, without smearing or marching procedures, if the coordinate lines 

he automatically in regions of large gradients. 
rfield [2] and Amsden and Hirt [4] achieve some control of the coor 

line spacmg by varying the elliptic system as follows: As noted previously 
methods take the physical coordinates to be solutions of modified Laplace 
equations in the transformed plane (and hence the curvilinear coordinates to be 
solutions of a nonlinear elliptic system in the physical plane): 

Some control of the coordinate line spacing in the field may then be exercised 
by varying the constants a and b. Both investigators reported some crossover of 
coordinate lines for some values of a and b or for some distributives of x and y o 
the boundaries. 

Amsden and Hirt also used different weights on each neighboring value iu their 
weighted-average iteration for the x and y values in the field in the transfo 
plane, again in an attempt to control the coordinate line spacing. This is equivale 
to solving a nonlinear elliptic system for the physical coordinates in the 
plane, 

To achieve some control of the spacing, Godunov and Prokopov [5] added the 
terms axe + bx, and ay, + by, , where a = a@, T) and b = b(t, T$ are specified 
functions, to the right sides of Eqs. (3a) and (3b), respectively. These equations 
may be shown to be the transformation of the following equations in the physical 
plane : 

&!, + ‘LJ = -&% - &d” 
Qme + QYY = -f7&% - E*Q3”* 
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IV. CONCLUSION 

The general method of boundary-fitted coordinate system generation discussed 
should have wide applicability in the numerical solution of partial differential 
equations. With its use, the treatment of fields with complex boundaries and any 
number of bodies or holes is not inherently more difficult than problems with 
simply geometry. The method affords a natural means of treating problems with 
moving or deforming boundaries, since the computational field remains steady 
in any case and no interpolation is required. Finally, the complete coupling of the 
partial differential equations for the coordinate system with those of the physical 
problem of interst, so that the coordinate system as such is effectively eliminated, 
is an intriging area for further pursuit. 

APPENDIX 

It should be noted that the divergence property is preserved in the transformed 
plane. For example, consider the partial differential equation 

V*F=S (Al) 

If this equation is integrated over an area, R, in the two-dimensional physical plane 
we have 

.i’s, (F,= + F,J dx dv = J‘s, S dx dv 

where the x and y components of F are indicated by subscripts 1 and 2, respectively, 
to avoid confusion with the notation for partial deviatives. Application of Green’s 
Theorem to the integral on the left yields the conservation relation 

6459 

where C is the boundary curve of the area R. Here the contour integral represents 
a net flux through the closed boundary of the area R, and the integral over the 
area represents a source within the area. 

Now let the partial differential equation be transformed so that in the 
transformed plane we have 
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and the last two terms cancel. Therefore the partial ifferential equation in t 
transformed plane may be equivalently written as 

(Fly, - Fzx,)< + V&t - J%& = s.f 

Now integrate this equation over the transformed area R’: 

SI R’ 
U’,Y, - 4x,)< + (FA - 4~eM 4 4 = 

Again using Green’s Theorem for the integral on the left, we have the conservation 
relation in the transformed plane: 

Again the contour integral represents a net flux through the boundary curve, C’, as 
may be seen in the following. The unit normal to a &coordinate line is given by 

where r is the position vector of a point on the coordinate line, s is is arc length 
along the line, and k is the unit normal to the two-dimensional plane. Now 

so that 

Then the component of F normal to this &coordinate iine is 

so that the fiux through this &coordinate line is 

(F a .(@)I dr / = (Fl yn - F,x,) dq 

(A6) 
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Similarly, the unit normal to an q-coordinate line is 

so that the flux through this r-coordinate line is 

(F * n(*))/ dr 1 = (Fly, - &xc) dtf (A9) 

Finally, since Jdf dr = dx dy, the integral over the area R’ again represents a 
source within the physical area. 

The conservation relation (A5) in the transformed plane thus expresses con- 
servation in the physical plane over the non-rectangular area formed by intersection 
of the curvilinear [ and 71 coordinate lines, while the original relation (A2) expresses 
conservation over the rectangular area formed by intersection of the straight x and 
y coordinate lines. 

It is emphasized that the transformed relation still expresses conservation over 
an area in the physical plane. It is clear that the finite difference representation of 
the conservation relation (A5), properly expressed on a rectangular cell in the 
transformed plane, centered at (i,j), 

does, in view of (A7) and (A9) above, represent conservation over an elemental 
area in the physical plane. As with the original relation the central difference 
expression of (A4) in the transformed plane yields the above finite difference 
expression also. The use of the analytically equivalent relation (A3) would, however, 
not yield the same finite difference relation or the conservation relation. It is thus 
possible to express the transformed differential equation in a form which does not 
preserve the physical conservation relations. However, the point is that the proper 
expression of the transformed equations will always preserve the physical con- 
servation relations both analytically and on the discrete field. 

Now it might be argued that conservation may be more accurately expressed over 
a rectangular elemental area in the physical field than over an area with curved 
boundaries, and such may well be the case to some extent in the interior of the 
field. However, in most partial differential systems the boundary conditions are the 
dominant influence on the nature of the entire solution. (Recall that all the myriad 
fluid flow patterns from smooth flow past a flat plate to the oscillatory vortex street 
are solutions of the same partial differential equations. Just the boundary condi- 
tions are different.) For fields with curved boundaries, the rectangular computa- 
tional cell structure thus is least accurate in the region of strongest influence on the 
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nature of the solution, i.e., near the boundary, and it is this sensitive region that 
must determine the fineness of mesh. In fact, numerical formulations that are 
conservative in the interior of the field may not be strictly conservative near 
curved boundaries because of the use of interpolation and ~o~coi~~idence of grid 
points with the boundary. It is therefore probable that the general coo 
approach can give better overall accuracy than any coor 
coordinate lines coincident with the boundaries. 
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